Structure of the 1,N2-Etheno-2′-deoxyguanosine Lesion in the 3′-G(εdG)T-5′ Sequence Opposite a One-Base Deletion†
نویسندگان
چکیده
The structure of the 1,N(2)-ethenodeoxyguanosine lesion (1,N(2)-epsilondG) has been characterized in 5'-d(CGCATXGAATCC)-3'.5'-d(GGATTCATGCG)-3' (X = 1,N(2)-epsilondG), in which there is no dC opposite the lesion. This duplex (named the 1-BD duplex) models the product of translesion bypass of 1,N(2)-epsilondG by Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4) [Zang, H., Goodenough, A. K., Choi, J. Y., Irimia, A., Loukachevitch, L. V., Kozekov, I. D., Angel, K. C., Rizzo, C. J., Egli, M., and Guengerich, F. P. (2005) J. Biol. Chem. 280, 29750-29764], leading to a one-base deletion. The T(m) of this duplex is 6 degrees C higher than that of the duplex in which dC is present opposite the 1,N(2)-epsilondG lesion and 8 degrees C higher than that of the unmodified 1-BD duplex. Analysis of NOEs between the 1,N(2)-epsilondG imidazole and deoxyribose H1' protons and between the 1,N(2)-epsilondG etheno H6 and H7 protons and DNA protons establishes that 1,N(2)-epsilondG adopts the anti conformation about the glycosyl bond and that the etheno moiety is accommodated within the helix. The resonances of the 1,N(2)-epsilondG H6 and H7 etheno protons shift upfield relative to the monomer 1,N(2)-epsilondG, attributed to ring current shielding, consistent with their intrahelical location. NMR data reveal that Watson-Crick base pairing is maintained at both the 5' and 3' neighbor base pairs. The structure of the 1-BD duplex has been refined using molecular dynamics calculations restrained by NMR-derived distance and dihedral angle restraints. The increased stability of the 1,N(2)-epsilondG lesion in the absence of the complementary dC correlates with the one-base deletion extension product observed during the bypass of the 1,N(2)-epsilondG lesion by the Dpo4 polymerase, suggesting that stabilization of this bulged intermediate may be significant with regard to the biological processing of the lesion.
منابع مشابه
1,N2-Etheno-2′-deoxyguanosine Adopts the syn Conformation about the Glycosyl Bond When Mismatched with Deoxyadenosine
The oligodeoxynucleotide 5'-CGCATXGAATCC-3'·5'-GGATTCAATGCG-3' containing 1,N(2)-etheno-2'-deoxyguanosine (1,N(2)-εdG) opposite deoxyadenosine (named the 1,N(2)-εdG·dA duplex) models the mismatched adenine product associated with error-prone bypass of 1,N(2)-εdG by the Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4) and by Escherichia coli polymerases pol I exo(-) and pol II exo(-). At pH 5...
متن کاملDuplex DNA catalyzes the chemical rearrangement of a malondialdehyde deoxyguanosine adduct.
The primary DNA lesion induced by malondialdehyde, a byproduct of lipid peroxidation and prostaglandin synthesis, is 3-(2'-deoxy-beta-D-erythro-pentofuranosyl)-pyrimido[1, 2-a]purin-10(3H)-one (M1G). When placed opposite cytosine (underlined) at neutral pH in either the d(GGTMTCCG).d(CGGACACC) or d(ATCGCMCGGCATG). d(CATGCCGCGCGAT) duplexes, M1G spontaneously and quantitatively converts to the r...
متن کاملComprehensive Assessment of Oxidatively Induced Modifications of DNA in a Rat Model of Human Wilson's Disease.
Defective copper excretion from hepatocytes in Wilson's disease causes accumulation of copper ions with increased generation of reactive oxygen species via the Fenton-type reaction. Here we developed a nanoflow liquid chromatography-nanoelectrospray ionization-tandem mass spectrometry coupled with the isotope-dilution method for the simultaneous quantification of oxidatively induced DNA modific...
متن کاملDNA Interstrand Cross-Linking Reactions of Pyrrole-Derived, Bifunctional Electrophiles: Evidence for a Common Target Site in DNA
The site of DNA interstrand cross-linking identified by a family of pyrrole-derived bifunctional electrophiles was studied in vitro in synthetic DNA duplexes. This family includes reductively activated mitomycin C (l), oxidatively activated pyrrolizidine alkaloids (e.g. 2), the simple pyrroles 2,3and 3,4-bis-(acetoxymethyl)1-methylpyrrole (3 and 4), and the antitumor substance 2,3-dihydro-5-(3’...
متن کاملFormation of a N2-dG:N2-dG Carbinolamine DNA Cross-link by the trans-4-Hydroxynonenal-Derived (6S,8R,11S) 1,N2-dG Adduct
Michael addition of trans-4-hydroxynonenal (HNE) to deoxyguanosine yields diastereomeric 1,N(2)-dG adducts in DNA. When placed opposite dC in the 5'-CpG-3' sequence, the (6S,8R,11S) diastereomer forms a N(2)-dG:N(2)-dG interstrand cross-link [Wang, H.; Kozekov, I. D.; Harris, T. M.; Rizzo, C. J. J. Am. Chem. Soc.2003, 125, 5687-5700]. We refined its structure in 5'-d(G(1)C(2)T(3)A(4)G(5)C(6)X(7...
متن کامل